COrDIS мини 1 ••••••

Набор реагентов для мультиплексного анализа 8-ми STR-маркеров и локуса амелогенина человека

Инструкция пользователя

Оглавление

1.	ИНФОРМАЦИЯ О ПРОДУКТЕ	3
1.1	Описание продукта	3
1.2	Компоненты набора и состав	4
1.3	Условия хранения	5
1.4	Основные характеристики набора	6
1.5	Гарантии качества	6
1.6	Сопутствующие материалы	6
2.	РАЗВЕДЕНИЕ СУХИХ КОМПОНЕНТОВ	7
2.1	Контрольная ДНК	7
2.2	Размерный стандарт S550	7
2.3	Аллельная лестница	7
3.	ПЦР АМПЛИФИКАЦИЯ	8
3.1	Постановка реакции	8
3.2	Условия амплификации	8
4.	ЭЛЕКТРОФОРЕЗ НА АНАЛИЗАТОРЕ АВІ PRISM 3130/3130XL	10
4.1	Создание матрикса / спектральная калибровка	10
4.2	Условия капиллярного электрофореза	12
4.3	Создание Instrument Protocol	13
4.4	Подготовка и загрузка продуктов амплификации	13
4.5	Запуск прибора	14
4.6	Оптимизация интенсивности сигналов	15
5.	ЭЛЕКТРОФОРЕЗ НА АНАЛИЗАТОРЕ АВІ PRISM 3500/3500XL	16

7.	ИНФОРМАЦИЯ О ФИРМЕ ПРОИЗВОДИТЕЛЕ	34
6.5	Аллельная лестница	33
6.4	Амплификация контрольной ДНК	32
6.3	Диапазоны размеров аллелей STR маркеров	31
6.2	Стандарт длины S550	30
6.1	Настройка программного обеспечения GeneMapper	25
6.	АНАЛИЗ ДАННЫХ	25
5.8	Оптимизация интенсивности сигнала	25
5.7	Запуск прибора	24
5.6	Подготовка и загрузка продуктов амплификации	23
5.5	Создание Assay	22
5.4	Создание QC Protocol	21
5.3	Создание Size Standard	20
5.2	Создание Instrument Protocol	19
5.1	Создание матрикса / спектральная калибровка	16

История изменений:

Версия	Дата	Описание	Раздел
документа			
240419	19.04.24	Внесены изменения в	Раздел 2. Разведение сухих
		протокол приготовления	компонентов, пункт 2.3
		раствора аллельного	
		лэддера	
230706	06.07.23	Внесены рекомендации	Раздел 4. Электрофорез на
		по этапу денатурации	анализаторе ABI PRISM
		ПЦР продуктов	3130/3130XL, пункт 4.4;
			Раздел 5. Электрофорез на
			анализаторе ABI PRISM
			3500/3500XL, пункт 5.6

1. ИНФОРМАЦИЯ О ПРОДУКТЕ

1.1 Описание продукта

COrDIS мини 1 - набор реагентов для молекулярно-генетической идентификации личности на основе мультиплексного ПЦР-анализа 8-ми локусов, содержащих короткие тандемные повторы (STR-локусы) и локуса гена амелогенина в геномной ДНК человека. Все анализируемые STR-локусы (D12S391, D10S1248, FGA, D16S539, D8S1179, CSF1PO, D5S818, VWA, SE33) широко используются для идентификации личности и входят в стандартные панели CODIS (Combined DNA Index System) и ESS (European Standard Set). Амплификация всех маркеров в формате коротких ПЦР-продуктов обеспечивает высокую успешность при анализе сильно деградированных препаратов ДНК. Праймеры для ПЦР подобраны с учетом проведения амплификации всех 9-ти локусов в одной пробирке. Размер всех амплифицируемых ПЦР продуктов <400 пар нуклеотидов (с учетом всех известных аллелей). Анализ результатов ПЦР капиллярного электрофореза использованием проволится метолом с автоматических генетических анализаторов с лазериндуцированной флуоресцентной детекцией. В наборе используется пять флуоресцентных красителей. характеризующихся разными длинами волн эмиссии лля возможности одновременной детекции в разных каналах флуоресценции. Праймеры мечены четырьмя флуоресцентными красителями, детектируемыми в каналах Blue, Green, Yellow, Red. Стандарт длины S550 мечен пятым, флуоресцентным красителем и детектируется в отдельном канале Orange одновременно с продуктами ПЦР. Для получения полного STR-профиля образца достаточно 0,2 нанограмм недеградированной ДНК. Оптимальное количество – 0,5 нанограмм. Реакционная смесь в наборе аликвотирована в реакционных стрипованных пробирках 0,2 мл и поставляется в лиофилизированном виде, благодаря чему реакционные смеси могут храниться при комнатной температуре не менее 18 месяцев без потери чувствительности. Компоненты реакции активируются добавлением определенного объема раствора активатора в каждую пробирку. Общий объем реакции 25 мкл. Максимальный объем вносимого в реакцию раствора ДНК может составлять 20 мкл. Благодаря высокой устойчивости реакционной смеси к действию ингибиторов, большой объем препарата ДНК не мешает успешной амплификации.

Набор COrDIS мини 1 может использоваться для скрининговых экспертно-генетических исследований при сравнительном анализе больших массивов объектов в случаях, когда не требуется получение полного генетического профиля, а также для анализа сильно деградированных образцов ДНК в сочетании с наборами другими наборами линейки COrDIS. Кроме того, COrDIS мини 1 можно использовать для анализа родства (например, экспертизы спорного отцовства), а также для анализа химеризма после пересадки костного мозга. Набор валидирован для проведения ПЦР в амплификаторах: GeneAmp® 9700, GeneAmp® 2720, ProFlex PCR System, SimpliAmpTM Thermal Cycler, VeritiTM 96-Well Thermal Cycler. Анализ ПЦР-продуктов может проводиться с использованием генетических анализаторов ABI PRISM® 310/3130/XL/3500/3500XL (Applied Biosystems), Нанофор 05 (СИНТОЛ).

Маркер	Реф. номер GenBank®	Реф. аллель GenBank®	Хромосомная локализация	Структура единицы повтора реф. аллеля
D5S818	AC008512	11	5q23.2	[AGAT]11
D8S1179	AF216671	13	8q24.13	[TCTA] ₃
D10S1248	AL391869	13	10q26.3	[GGAA] ₁₃
D12S391	G08921	19.3	12p13.2	[AGAT]5 GAT[AGAT]7 [AGAC]6 AGAT
D16S539	AC024591	11	16q24.1	[GATA] ₁₁
CSF1PO	X14720	12	5q33.1	[AGAT] ₁₂
FGA	M64982	21	4q31.3	[TTTC] ₃ TTTTTTCT[CTTT] ₁₃ CTCC[TTCC] ₂
SE33	V00481	26.2	6q14	[AAAG]8 AA [AAAG]17
Амелогенин Х	K M55418	Х	Xp22.1-22.3	
Амелогенин У	M55419	Y	Yp11.2	

Таблица 1. Описание STR-локусов COrDIS мини 1

Таблица 1 Сводная информация о STR-локусах набора **COrDIS мини** 1. Структура единицы повтора приводится в соответствии с рекомендациями Международного Общества Судебных Генетиков (International Society for Forensic Genetics - ISFG) [Bär et al, 1997]. Локус амелогенина не является STR-маркером, однако продукты амплификации этого локуса для хромосом X и Y различаются по длине.

1.2 Компоненты набора и состав

1.	Стрипы с реакционными смесями 8 х 0.2 мл	24 стрипа
2.	Раствор активатора	1 пробирка (1 мл)
3.	Деионизированная вода	1 пробирка (1.7 мл)
4.	Контрольная ДНК МК1	1 пробирка (40 реакций)
5.	Стандарт длины \$550	2 пробирки (120 мкл)
6.	Аллельная лестница	1 пробирка (50 мкл)

Стрипы с реакционными смесями представляют собой реакционные пробирки объемом 0.2 мл, объединенные в стрипы по 8 шт и предназначены для проведения в них полимеразной цепной реакции. На дне пробирок содержатся все лиофилизированные компоненты полимеразной цепной реакции включая Таqполимеразу, смесь дНТФ, реакционный буфер, праймерную смесь.

Раствор активатора используется для разведения лиофилизированной реакционной смеси. Содержит буферный раствор и ионы магния Mg²⁺ в качестве активатора полимеразной цепной реакции.

Деионизированная вода предназначена для разведения компонентов набора и доведения реакций до рабочего объема.

Контрольная ДНК МК1 представляет собой 20 нг высокомолекулярной лиофилизированной геномной ДНК мужчины с известным генотипом по всем исследуемым локусам (Рис. 2). Предназначена для контроля этапов амплификации. электрофореза анализа данных. Поставляется И лиофилизированном виде. Перед использованием требует разведения водой (п. 2.1).

Стандарт длины S550 представляет собой лиофилизированную смесь флуоресцентно-меченных фрагментов ДНК разной длины, меченых спектральным аналогом LIZ, детектируемым в канале Orange. Стандарт длины S550 содержит 26 фрагментов ДНК разной длины (н.п.): 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 230, 240, 260, 280, 300, 320, 340, 360, 380, 390, 400, 420, 440, 450, 500, 550. Стандарт \$550 используется на этапе капиллярного электрофореза, вносится в каждый капилляр одновременно с исследуемым образцом и служит опорным внутренним стандартом для построения кривой подвижности амплифицированных фрагментов исследуемого образца. Благодаря высокой плотности фрагментов стандарта S550 обеспечивается высокая точность и воспроизводимость определения длины амплифицированных фрагментов исследуемого образца. Перед использованием требует добавления воды (п. 2.2).

Аллельная лестница представляет собой лиофилизированную смесь из флуоресцентно-меченных амплифицированных фрагментов ДНК. соответствующих аллельным вариантам исследуемых всем локусов, встречающимся с частотой более 1%. Аллельная лестница используется на этапе капиллярного электрофореза, анализируется параллельно с каждой серией образцов для идентификации аллельных вариантов исследуемых локусов. Поставляется в лиофилизированном виде. Перед использованием требует добавления воды (п. 2.3). Аллельная лестница содержит ПЦР-продукты и при несоблюдении мер предосторожности может быть источником контаминации остальных реагентов. Сразу после получения набора рекомендуется извлечь аллельную лестницу из общей упаковки и хранить отдельно от остальных компонентов в темноте в зоне для работы с ПЦР-продуктами.

1.3 Условия хранения

Все компоненты за исключением раствора активатора и деионизированной воды, поставляются в сухом виде. В связи с этим при транспортировке не требуется соблюдение специального температурного режима. Флуоресцентно меченные праймеры, размерный стандарт S550 и аллельная лестница чувствительны к воздействию света и должны храниться в темном месте.

Контрольная ДНК, аллельная лестница и размерный стандарт после разведения лиофилизированных компонентов водой, должны храниться при 2 -

8°С в течение месяца. Для более длительного хранения рекомендуется заморозка при -20°С.

Сразу после получения набора рекомендуется извлечь аллельную лестницу из общей упаковки и хранить отдельно от остальных компонентов в темноте в зоне для работы с ПЦР-продуктами.

1.4 Основные характеристики набора

Количество одновременно анализируемых маркеров – 9 Список одновременно анализируемых локусов: D12S391, D10S1248, FGA, D16S539, D8S1179, CSF1PO, D5S818, VWA, SE33, Амелогенин Количество флуоресцентных меток, используемых в наборе – 5 Оптимальное количество вносимой ДНК: 0,2–2 нг Предел чувствительности: 50 пг Дискриминирующий потенциал набора: менее 1 из 10⁹

1.5 Гарантии качества

Высокое компонента набора проверено качество каждого И контролируется процессе производства. Каждый выпущенный В лот лиофилизированных реагентов регулярно проверяется на соответствие заявленным характеристикам в течение 18 месяцев. В случае возникновения относительно качества набора COrDIS мини вопросов 1. просим незамедлительно связаться с ООО "ГОРДИЗ".

1.6 Сопутствующие материалы

Необходимые материалы, не входящие в набор:

Матриксный стандарт CS5 (ООО "ГОРДИЗ"). Бины и панели для GeneMapperTM (ООО "ГОРДИЗ", предоставляются бесплатно по запросу).

Материалы, поставляемые другими фирмами

Реагент	Производитель	Каталожный номер
Буфер TAPS	ЗАО «СИНТОЛ»	ТАПС
Полимер ПДМА4	ЗАО «СИНТОЛ»	ПДМА-4
Hi-Di TM Formamide	Applied Biosystems	(P/N 4311320)
10 x Genetic Analyzer Buffer	Applied Biosystems	(P/N 402824)
Polymer (POP-4)	Applied Biosystems	(P/N 402838)

2. РАЗВЕДЕНИЕ СУХИХ КОМПОНЕНТОВ

2.1 Контрольная ДНК

Добавить 40 мкл деионизированной воды, поставляемой с набором в пробирку с сухой контрольной ДНК. Тщательно перемешать на вортексе и собрать на дне пробирки коротким центрифугированием. Для проведения ПЦР необходимо добавить 1 мкл контрольной ДНК в реакционную пробирку. Данный объем будет соответствовать 500 пг геномной ДНК. После разведения, контрольную ДНК необходимо хранить при температуре 2–8 °С в течение месяца. Для более длительного хранения рекомендуется хранить в замороженном виде. Следует избегать многократного размораживания.

2.2 Размерный стандарт S550

Перед использованием добавить 120 мкл деионизированной воды в пробирку с сухим размерным стандартом S550. Тщательно перемешать на вортексе и собрать на дне пробирки коротким центрифугированием.

Для проведения капиллярного электрофореза добавить 1 мкл стандарта S550 в каждую лунку планшета, содержащую формамид и ПЦР продукт.

2.3 Аллельная лестница

Сразу после получения набора, пробирку с аллельной лестницей необходимо извлечь из коробки и хранить отдельно в зоне для работы с ПЦР-продуктами в темном месте.

Для получения рабочего раствора добавить в пробирку с сухой аллельной лестницей 50 мкл деионизированной воды, поставляемой с набором. Тщательно перемешать на вортексе и собрать на дне пробирки центрифугированием в течение нескольких секунд. После разведения аллельную лестницу необходимо хранить в темноте при температуре 2–8 °C. Для длительного хранения (> 1 месяца) рекомендуется хранить раствор в замороженном виде. Следует избегать многократной разморозки. Для проведения капиллярного электрофореза необходимо добавить 1 мкл аллельной лестницы в смесь формамида и размерного стандарта.

3. ПЦР АМПЛИФИКАЦИЯ

3.1 Постановка реакции

В каждую пробирку необходимо внести 5 мкл Активатора. Затем внести до 20 мкл раствора исследуемой геномной ДНК в количестве 0,5–2 нг. Оптимальное количество вносимой ДНК – 0,5 нг. Вносимый объем ДНК зависит от ее концентрации. Максимально возможный объем вносимого раствора ДНК составляет **20 мкл**. При необходимости довести общий объем реакции до 25 мкл деионизированной водой, поставляемой в составе набора.

Компоненты набора	Объем на 1 реакцию
Раствор активатора	5 мкл
Геномная ДНК (0.2–2 нг)	до 20 мкл
Деионизированная вода, до конечног	го объема 25 мкл

Необходимо учитывать, что в некоторых случаях при добавлении ДНК в объеме более 10 мкл возможно внесение избытка ингибирующих веществ в реакцию, что может приводить к снижению чувствительности. Тем не менее, набор **COrDIS мини 1** обладает высокой устойчивостью к ингибиторам. В связи с этим, как правило, большие объемы раствора ДНК не вызывают трудностей. При разведении геномной ДНК водой важно помнить, что в деионизированной воде происходит постоянный гидролиз ДНК. Для длительного хранения рекомендуется разведение ДНК в буферах (pH>7), содержащих небольшое количество ЭДТА (например, TE с 0,1 mM ЭДТА). Высокая концентрация ЭДТА в растворе ДНК может быть причиной снижения эффективности реакции вследствие хелатирования ионов магния.

После внесения всех компонентов, реакционную смесь необходимо тщательно перемешать до гомогенного состояния 5–8 кратным пипетированием, либо используя вортекс. При необходимости собрать раствор на дне пробирки коротким центрифугированием. Тщательное перемешивание необходимо для максимальной эффективности реакции.

С каждой серией исследуемых образцов необходимо амплифицировать один положительный контроль (1 мкл контрольной ДНК + 19 мкл деионизированной воды, поставляемой с набором) и один отрицательный контроль (20 мкл деионизированной воды вместо ДНК).

3.2 Условия амплификации

Приведённые ниже условия амплификации рекомендуются в качестве стандартных параметров. Важно соблюдение скорости нагрева **0,3°С/сек**. на этапе повышения с температуры с 59°С до 72°С. В связи с высокой сложностью амплификации с участием 18 пар праймеров данная скорость нагрева критична для оптимальной эффективности реакции.

Параметры ПЦР:

94°C	3 мин	
98°C 59°C* 72°C	30 сек 120 сек 90 сек	4 цикла
94°C 59°C* 72°C	30 сек 120 сек 90 сек	6 циклов
90°C 59°C 72°C*	30 сек 120 сек 75 сек	20 циклов
68°C <u>15°C</u>	10 мин ∞	

^{*} Рекомендуемая скорость нагрева с 59°С до 72°С - не более 0,3°С/1 сек.

В случае, если используемая модель амплификатора не позволяет точно устанавливать скорость нагрева, рекомендуется воспользоваться секундомером для подбора рекомендуемой скорости.

Например, в амплификаторах GeneAmp 9700 не предусмотрена возможность точного программирования скорости изменения температуры, но они позволяют ограничить скорость нагрева в процентном отношении. В приведенном ниже примере показаны подобранные значения скорости нагрева в процентном выражении для амплификатора GeneAmp 9700 с алюминиевым блоком в режиме эмуляции GeneAmp 9600.

1Hold	3 Tmp 4 Cycles	3 Tmp 6 Cycles	3 Tmp 20 Cycles	
94.0	98.0 100% 59.0 100% 35%	94.0 100% 59.0 100% 35%	90.0 100% 59.0 100% 35%	68.0

При работе с низкокопийными количествами ДНК (<0,1 нг ДНК) можно повысить чувствительность реакции добавив 2–4 дополнительных цикла ПЦР. Не рекомендуется превышать 34 цикла. В этом случае возрастает опасность ошибки вследствие выпадения аллелей и дисбаланса гетерозигот.

После завершения программы ПЦР амплифицированные продукты можно хранить неделю при 4°С – 8°С в защищенном от света месте. В случае,

если амплифицированные продукты необходимо хранить более недели, рекомендуется заморозка при -20°С.

4. ЭЛЕКТРОФОРЕЗ НА АНАЛИЗАТОРЕ АВІ PRISM 3130/3130XL

При работе с генетическим анализатором ABI PRISM, и последующем анализе флуоресцентных профилей в программе GeneMapperTM, необходимо следовать инструкциям пользователя от производителя оборудования.

Для корректной визуализации пяти флуоресцентных меток COrDIS мини 1 необходимо проведение спектральной калибровки для набора красителей "**any5dyes**" с использованием матрикс-стандарта CS5.

4.1 Создание матрикса / спектральная калибровка

Анализ продуктов амплификации COrDIS мини 1 на генетическом анализаторе возможен только после проведения калибровки с 5-ти цветным матрикс-стандартом CS5 (не поставляется с набором, заказывается отдельно по каталожному номеру: CS5). Матрикс-стандарт содержит смесь 5-ти фрагментов разной длины, меченных разными флуоресцентными красителями. Эти красители использованы в наборе для мечения ПЦР-продуктов и размерного стандарта S550.

Для приготовления рабочего раствора матрикс-стандарта CS5 добавить 50 мкл деионизированной воды в пробирку, содержащую лиофилизированный CS5 и инкубировать при комнатной температуре 2 мин. Затем тщательно перемешать раствор на вортексе и собрать на дне пробирки коротким центрифугированием. Готовый раствор можно хранить в темном месте при температуре 2 °C – 8 °C до 2 недель. Для более длительного хранения раствор следует заморозить. Следует избегать повторного размораживания.

При проведении спектральной калибровки **настоятельно рекомендуется** использовать только чистые септы для емкостей, содержащих буферный раствор и воду. Использование при проведении спектральной калибровки ранее использованных септ, может приводить к попаданию в область анализа ранее исследованных меченных ПЦР продуктов, и препятствовать успешному анализу матричного стандарта.

Подготовка матрикс-стандарта для калибровки (АВІ 3130 /4 капилляра)

Hi-Di ^{тм} формамид	40 мкл
Раствор CS5	4 мкл

Добавить по 10 мкл смеси в лунки A01-D01 96-луночного планшета. При необходимости удалить пузыри со дна лунок центрифугированием.

<u>Подготовка матрикс-стандарта для калибровки (ABI 3130XL/16 капилляров)</u>

Hi-DiTM формамид	160 мкл
Раствор CS5	16 мкл

Добавить по 10 мкл смеси в лунки A01- H02 96-луночного планшета. При необходимости удалить пузыри со дна лунок центрифугированием.

Спектральная калибровка

Шаг А – Создание Instrument Protocol для спектральной калибровки

Открыть Protocol Manager в программе Data Collection Software Зайти во вкладку Instrument Protocol и выбрать New чтобы открыть Protocol Editor.

Ввести следующие параметры в окне Protocol Editor (Instrument Protocol):

Значение
например, Spectral36_POP4_CS5
SPECTRAL
any5dye
POP4
36
Matrix Standard
Spect36_POP4_1

Выбрать OK и закрыть Protocol Editor

Шаг Б – Создание планшета

Перейти в Plate Manager программы Data Collection Software выбрать кнопку New. Откроется окно Plate Dialog.

Ввести следующие параметры	в диалоговом окне New Plate:
Name	например, Spectral_any5_CS5
Application	Spectral Calibration
Plate Type	96-Well

Выбрать ОК. Появится	новая таблица Plate Editor
Ввести в позиции А01:	
Sample Name	например, CS5
Priority	например, 100
Instrument Protocol	Spectral36_POP4_CS5

Выделить ячейку A01 целиком. В меню Edit выбрать команду Fill Down Special. Программа заполнит введенными значениями соответствующее количество ячеек для одной загрузки капилляров. Например, от A01 до A04 (ABI 3130 / 4 капилляра) или от A01 до H02 (ABI 3130XL / 16 капилляров).

Выбрать OK чтобы закончить создание планшета и выйти из Plate Editor.

Шаг С – Проведение спектральной калибровки

Перейти во вкладку **Run Scheduler** – **Plate View** и выбрать **Find All**. Выбрать заданное название созданного планшета (например, Spectral_any5_CS5). Связать выбранное название с установленным в прибор планшетом. Запустить прибор.

Шаг D – Оценка результатов спектральной калибровки

После завершения работы прибора проверить статус каждого капилляра (pass или fail). Открыть **Instrument Status**, перейти во вкладку **Event Log**. В окне **Event Messages** отображается статус всех капилляров. Каждый капилляр должен иметь значение Q-value не ниже **0.8**. Высота пиков должна быть не менее 1.000 rfu, но ниже 5.000 rfu (оптимальный диапазон между 2000 и 4000 rfu).

Дополнительно в окне **Spectral Viewer** можно просмотреть флуоресцентный профиль калибровки для каждого капилляра. Калибровка должна быть успешной минимум для 3 из 4 капилляров (или для 12 из 16 капилляров, соответственно). При использовании CS5 в качестве матриксного стандарта, в окне профиля калибровки должна отражаться следующая последовательность пиков синий-зеленый-красный-красный-оранжевый.

В случае успешной калибровки рекомендуется ее переименовать, присвоив более удобное название. Для этого нажать кнопку **Rename**, ввести новое название калибровки (например, **CS5_[дата]** и нажать **OK**. Нужно иметь виду, что для каждого набора виртуальных фильтров (**dye set**) последняя калибровка автоматически становится активной. Если вы планируете использовать результаты предыдущих калибровок, их необходимо активировать до запуска прибора.

4.2 Условия капиллярного электрофореза

Перед проведением первого анализа продуктов амплификации COrDIS мини 1 на генетическом анализаторе, необходимо создать соответствующий модуль Run Module. Для этого перейти в Module Manager программы Data Collection Software и нажать кнопку New. Откроется окно Run Module Editor. Создать модуль со следующими параметрами:

240	1/1	0
241	J41	.9

Параметр	Значение
Oven Temperature	60
Poly Fill Volume	4840
Current Stability	5
PreRun Voltage	15
PreRun Time	180
Injection Voltage	3
Injection Time	5
Voltage Number of Steps	40
Voltage Step Interval	15
Data Delay Time	1
Run Voltage	15.0
Run Time	1700

Нажать **Save As** и ввести удобное название для созданного модуля (например, COrDIS). Нажать **OK** и покинуть редактор модуля нажав **Close**.

4.3 Создание Instrument Protocol

Перейти в раздел Protocol Manager программы Data Collection Software. В окне Instrument Protocol нажать кнопку New чтобы открыть редактор протокола Protocol Editor.

Необходимо ввести следующие параметры:

Параметр	Значение
Name	Run36_COrDIS
Туре	REGULAR
Run Module*	COrDIS
Dye Set	Any5Dye

Нажать кнопку **ОК** чтобы сохранить изменения и выйти из редактора протокола.

4.4 Подготовка и загрузка продуктов амплификации

Для загрузки образцов в прибор необходимо приготовить смесь Hi-DiTM формамида и размерного стандарта S550 (разведенного в соответствии с п. 2.2) в следующем соотношении:

Компонент	Объем на один образец
Hi-Di TM формамид	10.0 мкл
Размерный стандарт S550	1.0 мкл

При расчете объемов компонентов смеси следует учесть, что формамидом должны быть заполнены все лунки, в которых будет происходить инжекция, в том числе и лунки, не содержащие образцы. Как минимум одна лунка при анализе каждой серии образцов должна содержать аллельную лестницу.

После перемешивания добавить по 10 мкл смеси в каждую лунку планшета. Затем внести в лунки по 1 мкл ПЦР-продукта или аллельной лестницы. При необходимости удалить пузыри со дна лунок планшета коротким центрифугированием.

Накрыть планшет резиновым ковриком и провести температурную денатурацию по схеме:

95°C	2	МИН
4°C _	1	МИН

Загрузить планшет с денатурированными образцами в прибор в соответствии с инструкцией пользователя ABI PRISM[®] Genetic Analyzer.

4.5 Запуск прибора

Проведение капиллярного электрофореза на генетическом анализаторе ABI PRISM[®] проводится в соответствии с инструкцией пользователя, предоставляемой производителем. Для получения корректных результатов необходимо создать соответствующую спектральную калибровку, **Run Module** и **Instrument Protocol**.

Шаг А - Создание планшета

Перед началом анализа необходимо создать **Plate** (планшет), описывающий расположение образцов на планшете и содержащий инструкции для прибора. Перейти в **Plate Manager** программы **Data Collection Software** и нажать кнопку **New**. Появится диалоговое окно **Plate Dialog**. Ввести следующие параметры:

Параметр	Значение
Name	Например COrDIS_[<i>дата</i>]
Application	выбрать GeneMapper
Plate Type	96-Well
Нажать кнопку ОК. Появится но	овая таблица Plate Editor.

Параметр	Значение
Sample Name	Название образца
Priority	обычно 100 (очередность анализа по возрастанию)
Sample Type	Sample / Allelic Ladder / Positive Control / Neg. Control
Size Standard	S550
Panel	COrDIS
Analysis Method	Hапример, GORDIZ
User-defined 1-3	
SNP Set	
Results Group	Выбрать соответствующий Results Group
Instrument Protocol	Run36_POP4_CS5

Шаг В Заполнение таблицы

Для удобства в первую очередь лучше ввести все названия образцов. Затем, для первого образца задать все необходимые параметры. Выделить курсором мыши все столбцы. В меню **Edit** выбрать пункт **Fill Down**. Программа заполнит значениями все выделенные ячейки. После этих действий редактировать столбец Sample Type, выбрав между значениями Allelic Ladder / Positive Control / Negative Control.

Шаг С Запуск прибора и информация о статусе прибора

Перейти в раздел **Run Schedule** и нажать на кнопку **Find All**. Найти в списке название созданного планшета, выделить его и связать нажатием мыши с изображением установленного в приборе планшета. Запустить анализ планшета.

Флуоресцентные профили образцов можно наблюдать в реальном времени в разделе **Capillaries Viewer** или **Cap/Array Viewer**. В случае возникновения системных ошибок информация о них появится в разделе Event Log (Error Status).

4.6 Оптимизация интенсивности сигналов

Для повышения интенсивности пиков возможно увеличение времени инжекции до 15 сек и/или увеличение вольтажа до 15 kV.

Возможно усиление сигнала с помощью очистки ПЦР-продукта от праймеров и солей. Количество размерного стандарта в этом случае следует так же уменьшить.

При работе с некоторыми модификациями генетических анализаторов ABI 3130, оснащенных высокочувствительными флуоресцентными датчиками могут наблюдаться нежелательные эффекты, связанные с избыточным уровнем сигнала флуоресценции амплифицированных продуктов на этапе анализа результатов электрофореза. Снижение избыточного уровня сигнала флуоресценции амплифицированных продуктов может быть достигнуто снижением времени инжекции образцов до 3 сек и/или снижением вольтажа до 1.5 kV.

5. ЭЛЕКТРОФОРЕЗ НА АНАЛИЗАТОРЕ АВІ PRISM 3500/3500XL

При работе с генетическим анализатором ABI PRISM, и последующем анализе флуоресцентных профилей в программе GeneMapperTM, необходимо следовать инструкциям пользователя от производителя оборудования.

5.1 Создание матрикса / спектральная калибровка

Анализ продуктов амплификации COrDIS мини 1 на генетическом анализаторе возможен только после проведения калибровки с 5-ти цветным матрикс-стандартом CS5 (не поставляется с набором, заказывается отдельно по каталожному номеру: CS5). Матрикс-стандарт содержит смесь 5-ти фрагментов разной длины, меченных разными флуоресцентными красителями. Эти красители использованы в наборе для мечения ПЦР-продуктов и размерного стандарта S550.

Для приготовления рабочего раствора матрикс-стандарта CS5 добавить 50 мкл деионизированной воды в пробирку, содержащую лиофилизированный CS5 и инкубировать при комнатной температуре 2 мин. Затем тщательно перемешать раствор на вортексе и собрать на дне пробирки коротким центрифугированием. Готовый раствор можно хранить в темном месте при температуре 2 °C – 8 °C до 2 недель. Для более длительного хранения раствор следует заморозить. Следует избегать повторного размораживания.

При проведении спектральной калибровки настоятельно рекомендуется использовать только чистые септы для емкостей, содержащих буферный раствор и воду. Использование при проведении спектральной калибровки ранее использованных септ, может приводить к попаданию в область анализа ранее исследованных меченных ПЦР продуктов, и препятствовать успешному анализу матричного стандарта.

Подготовка матрикс-стандарта для калибровки (АВІ 3500 /8 капилляров)

Hi-Di TM формамид	80 мкл
Раствор CS5	8 мкл

Добавить по 10 мкл смеси в лунки A01-H01 96-луночного планшета. При необходимости удалить пузыри со дна лунок центрифугированием.

Накрыть планшет резиновым ковриком и провести температурную денатурацию по схеме:

95°С 2 мин 4°С 1 мин

Загрузить планшет с денатурированными образцами в прибор в соответствии с инструкцией пользователя ABI PRISM[®] Genetic Analyzer.

<u>Подготовка матрикс-стандарта для калибровки (ABI 3500XL/ 24 капилляра)</u>

Hi-DiTM формамид	240 мкл
Раствор CS5	24 мкл

Добавить по 10 мкл смеси в лунки A01- H03 96-луночного планшета. При необходимости удалить пузыри со дна лунок центрифугированием.

Накрыть планшет резиновым ковриком и провести температурную денатурацию по схеме:

95°С 2 мин 4°С 1 мин

Загрузить планшет с денатурированными образцами в прибор в соответствии с инструкцией пользователя ABI PRISM[®] Genetic Analyzer.

Спектральная калибровка

Шаг А – Создание Dye Set для спектральной калибровки

Перейти в раздел Library в программе Data Collection Software. В разделе Analyze, выбрать вкладку Dye Sets. В открывшемся меню нажать кнопку Create (откроется диалоговое окно создания нового Dye Set). В появившемся окне указать параметры нового Dye Set:

Dye Set Name CS5

Chemistry	Matrix standard
Dye Set Template	G5 Template
Arrange Dyes	оставить без изменений
Parameters:	
Matrix Condition Numb	er 20.0
Minimal Quality Score	0.8

Нажать кнопку Save. Новый Dye Set (CS5) появится в списке.

Шаг В – Проведение спектральной калибровки

Перейти в раздел Maintenance в программе Data Collection Software. В разделе Calibrate, выбрать вкладку Spectral Calibration. В открывшемся окне выбрать количество лунок в используемом планшете (Number of Wells) и позицию планшета в приборе (Plate Position). В пункте Chemistry Standard выбрать Matrix standard. В пункте Dye Set выбрать CS5. Запустить процесс калибровки нажав кнопку Start Run.

Шаг С – Оценка результатов спектральной калибровки

После завершения работы прибора проверить статус каждого капилляра (pass или fail). Высота пиков должна быть не менее 500 rfu, но ниже 10.000 rfu (оптимальный диапазон между 1000 и 5000 rfu).

Калибровка должна быть успешной минимум для 6 из 8 капилляров (или для 18 из 24 капилляров, соответственно). При использовании CS5 в качестве матриксного стандарта, в окне профиля калибровки (Intensity vs Pixel Number) должна отражаться следующая последовательность пиков синий-зеленый-желтый-красный-оранжевый.

В случае успешной калибровки сохранить полученные результаты, нажав кнопку Accept.

5.2 Создание Instrument Protocol

Перейти в раздел Library в программе Data Collection Software. В разделе Analyze, выбрать вкладку Instrument Protocols. В открывшемся меню нажать кнопку Create (откроется диалоговое окно создания нового Instrument Protocol). В появившемся окне указать параметры нового Instrument Protocol:

Application Type	HID
Dye Set	CS5
Run Module	например "HID36_POP4" (выбрать протокол
	соответствующий параметрам системы)
Protocol Name	COrDIS mini1

GORDIZ - Edit Instrum	ment Prot	tocol G	ORDIZ									
etup an Instrumer	nt Proto	col									6	U
											L.	Ţ
									Instrument Prot	acal Set	un Heln	0
			1						instrument Prot		up neip	Š
Application Type:	HID	Ÿ	ļ	Capilla	iry Length	i: 30 ▼	cm		Po	olymer:	POP4	Y
Dye Set: CS5	¥				🕅 Dis	able Name	Filter					
Instrument Protocol F	Properties	5										
* Run Module:	HID36_PC	DP4			▼ R	un Modul	es for 8 ca	pillary are	only available in th	e list.		
* Protocol Name:	CORDIS	mini1	1									
Description:												
Oven Temperatu	ire (°C):	60	Run Voltage (kVolts):	13.0	PreR	un Voltage	(kVolts):	15	Injection Voltage	(kVolts)	1.2	
Run Time	e (sec.):	1600	PreRun Time (sec.):	180	In	jection Tir	ne (sec.):	15	Data Dela	sy (sec.)	: 1	
▼ Advanced Option	ns											
Following values are	e not reco	mmen	nded to be changed.									
Voltage Toleran	ice (kVolt	s): 0.3	7 Volta	age # of St	eps (nk):	20		Volta	age Step Interval (se	c.): 15	;	
First Read Out	Time (m	s): 16	50 Second Re	ead Out Ti	me (ms):	160						
Normalizat	tion Targ	et: 38	800.0 Normalization Fac	tor Thresh	old Min:	0.3	Norm	nalization	Factor Threshold N	lax: 3.	0	
Close									Apply to Ass	ay S	eve to Li	brary

Рекомендуемые параметры электрофореза для генетического анализатора ABI 3500:

Параметр	Значение
Oven Temperature	60
PreRun Voltage	15
PreRun Time	180

Injection Voltage	1.2
Injection Time	15
Data Delay Time	1
Run Voltage	13.0
Run Time	1600

Нажать кнопку Save.

В зависимости от состояния используемого прибора, параметр Injection Time может быть скорректирован пользователем для достижения оптимальной амплитуды флуоресцентного сигнала. Параметр Run Time также может быть скорректирован пользователем в случае, если рекомендуемое время фореза является избыточным (все фрагменты размерного стандарта детектируются существенно раньше отведенного времени) или недостаточным (не все фрагменты размерного стандарта дотведенное время). Оптимальное время фореза в наибольшей степени зависит от текущего состояния капилляров и полимера в генетическом анализаторе и может меняться со временем.

5.3 Создание Size Standard

Перейти в раздел Library в программе Data Collection Software. В разделе Analyze, выбрать вкладку Size Standards. В открывшемся меню нажать кнопку Create (откроется диалоговое окно создания нового Size Standard). В появившемся окне указать параметры нового Size Standard. Стандарт длины S550 содержит 26 фрагментов ДНК разной длины (н.п.): 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 230, 240, 260, 280, 300, 320, 340, 360, 380, 400, 420, 440, 450, 500, 550.

dit Size Standard S	550				_
tup a Size Stan	dard				6
					4
* Size Standard	\$550				
Description	1				
Description.					
* Dye Color:	Orange •				
ter sizes in the field	below separated by a comma, space, o	or return t	hen click the "Add Su	te(s)>>" button to add them to the o	urrent size standard definition.
ster new Gra Standa	rd definition: (e.a. 11.0, 34.2, 55)			* Current Size Standard definition:	Delete Selected Sizes
net them sale startion	ra actimitari (e.g. 110, 541, 55)	*		60.0	
				70.0	
				80.0	
				90.0	
				100.0	
				120.0	
				140.0	
				160.0	
				180.0	
				200.0	
				230.0	
				240.0	
			Add Size(s) >>	260.0	
				280.0	
				300.0	
				320.0	
				340.0	
				360.0	
				400.0	
				420.0	
				440.0	
				450.0	
		-		500.0	
C		F		550.0	

Нажать кнопку Save. 5.4 Создание QC Protocol

Перейти в раздел Library в программе Data Collection Software. В разделе Analyze, выбрать вкладку QC Protocols. В открывшемся меню нажать кнопку Create (откроется диалоговое окно создания нового QC Protocol). В появившемся окне указать параметры нового QC Protocol:

Protocol Name: GORDIZ escription: ize Standard: 5550 izecaller: SizeCaller V1.10 • Inadysis Setting: CC Setting: Analysis Star Point: 0 Analysis Star Point: 0 Analysis Star Point: 100000 Sizing Start Size 0 Size Calling Method: Local Southern • Analysis Stop Point: 100000 Sizing Start Size 0 Size Calling Method: Local Southern • Analysis Stop Point: 100000 Sizing Start Size 0 Size Calling Method: Local Southern • Analysis Stop Point: 100000 Size Calling Method: Local Southern • Peak Amplitude Threshold 173 175 175 175 175 175 Common Setting: Use Baselining (Baseline Window (Pts)) Minimum Peak Haff Windh Peak Window Size 15 Stope Threshold Peak End 0.0 Close Save Stope Threshold Peak End Size Calling Method: Size 10000 Close Save Size Colloc Save	tup a QC Pro	tocol								í,
escription: lee Standard: 5550 • • texealler: SizeCaller V1.0 • thadysis Setting: QC Settings Analysis Setting: QC Settings Analysis Setting: Sizing Range: Full • Analysis Set Point: 0 Analysis Set Point: 0 Analysis Set Point: 0 Peak Amplitude Threshold 275 175 175 175 175 175 175 175 175 175 1	Protocol Name:	GORDIZ								9
ize Standard: 550 texcaller: SizeCaller VI.I.O • Inslytis Setting: QC Setting: Analysis Start Point: 0 Analysis Start Point: 0 Analysis Start Point: 0 Analysis Start Point: 0 Analysis Start Point: 100000 Sizing Stop Size: 100000 Peak Amplitude Threshold 175 175 175 175 175 175 175 175 175 175	escription:									
izecaller: SizeCaller VLD • tradysis Settings QC Settings Analysis Start Point: 0 Analysis Start Point: 0 Peak Amplitude Threshold 175 175 175 175 175 175 175 175 175 175	ize Standard:	\$\$50		-						
Inalysis Settings QC Settings	izecaller:	SizeCaller v	1.1.0 -							
Analysis Range: Full Analysis Start Point:	analysis Settings	QC Settings								6
Analysis Range: Eult Analysis Range: Eult Sizing Range: Eult Sizing Range: Eult Sizing Start Size: 0 Sizing Start Size: 0 Sizing Stop Size: 00000 Sizing Stop Size: 00000 Peak Amplitude Threshold 175 175 175 175 175 175 175 175 175 175										
Analysis Start Point: Analysis Start Point: Analysis Stop Point: Peak Amplitude Threshold Peak Amplitude Threshold	Analysis Range:	Full	•	Sizing Range:	Full	•		Size Calling Method:	Local Southern	•
Analysis Stop Point: 100000 Sting Stop Size: 100000 Peak Amplitude Threshold 175 175 175 175 Common Settings Use Smoothing Use Smoothing 19 12 Use Baselining (Baseline Window (Pto)) 9 51 13 15 15 Stop Point: Stop Point: 10 0.0 0.0 0.0 0.0 Close Save Stop Threshold Peak Start 0.0 0.0 0.0 0.0 Close Save Save Save Save Save Save Close Save Save Save Save Save Save Close Save Save Save Save Save Save	Analysis Start Po	int: 0		Sizing Start Size:	0					
Peak Amplitude Threshold 175 175 175 175 175 175 175 Common Settings Use Smoothing Use Smoothing Use Smoothing 19 10 10 10 Use Baselining (Baseline Window (Pts)) Ø 51 2 3 2 3	Analysis Stop Po	int: 100000	0	Sizing Stop Size:	100000					
Peak Amplitude Threshold 175 175 175 175 175 Common Settings Use Baselining (Baseline Window (Pts)) 12 13 12 12 Use Baselining (Baseline Window (Pts)) 15 1 12 13 12 12 Minimum Peak Haff Winth Peak Window Size Slope Threshold Peak End 0.0 0.0 0.0 0.0 Close Size Slope Threshold Peak End 0.0 0.0 0.0 0.0			🗑 Blue	🗑 Green	V Ye	llow	📝 Red	V Purple	🗸 Orange	
Common Settings Use Baselining (Baseline Window (Pts)) Use Baselining (Baseline Window (Pts)) Sig Use Baselining (Baseline Window (Pts)) Sig Pelynomial Degree Slope Threshold Peak Start 0.0 0.0 Close Save Sige Threshold Peak Start 0.0 0.0 Close Save Save Sige Threshold Peak Start 0.0 0.0 Close Save Save Save Sige Start Sta	Peak Amplitu	de Threshold	175	175	1	75	175	175	175	
Use Smoothing Use Baselining (Baseline Window (Pst)) Minimum Peak Half Withh Peak Window Size Polynomial Degree 3 Slope Threshold Peak Start 00 00 Close Save	- Common Sett	ings								_
Use Baselining (Baseline Vindow (Pts)) Use Baselining (Baseline Vindow (Pts)) Minimum Peak Half Width Peak Window Size 3 Polynomial Degree 3 Slope Threshold Peak Start 0.0 0.0 Close Save				Ure Smoo	thing	11-ba	1			
Close Save Slope Threshold Peak Start Slope Threshold Peak End Close Save Slope Threshold Peak End Close Save Slope Threshold Peak End Close Save Slope Threshold Peak End Close Save			Use Perelisia	ose smoo		Light •				
Immunum reac Nam worth 2 Peak Window Size 15 Polynomial Degree 3 Slope Threshold Peak Start 0.0 Slope Threshold Peak End 0.0			Use baselinin	g (baseline window	(PG))	2 31	_			
Pek Window Sze Polynomial Degree Slope Threshold Peak Sart 00 00 00 Close Close Swe Close Swe Close Swe Close Swe Close Close Close Swe Close Cl				Alinimum Peak Hait V	viath	2	_			
Pelynomial Degree Slope Threshold Peak Start Slope Threshold Peak Start 0.0 0.0 Close Save				Peak Window	v Size	15	_			
Slope Threshold Peak Sart 0.0 Slope Threshold Peak End 0.0 Close Save Sa				Polynomial D	egree	3	_			
Slope Threshold Peak End 0.0			S	ilope Threshold Peak	Start	0.0	_			
Close Save Save Save Save Save Save Save Sav				Slope Threshold Pea	k End	0.0				
Edit QC Protocol GORDEZ C tup a QC Protocol C Protocol Name GORDEZ escorption c as Sandard SSS escalarc SSS secalarc SSS Sac Quality C fail of Value in Suspect Range 1 025 25 0.027 2 0.75	Close								Sa	ve
tup a QC Protocol	Edit QC Protocol GC	ORDIZ							×	
Petecel Name GORDZ escription: as Sandard: SiacCaller v1.1.0 Analysis Settings C Settings Size Quality Fail If Value is Sinspect Range Pess If Value is C 0.25 2 0.75	tup a QC Proto	col								
escaparari secandrari: S350 • • secaller: SasCatter v3.1.0 • innalysis Settings C Settings Size Quality fail if Value in Surgert Range Pass If Value in 4 D25 • 225 • 225 • 22 0.75	Protocol Name:	SORDIZ								
iercaller: SienCaller v1.1.0	ize Standard:	\$50		-						
Analysis Settings QC Settings Sice Quality Fail If Value is Q25 U25 Q25 2 0.75	izecaller:	izeCaller v1.1.0	•							
Size Quality Pass If Value is Fail If Value is Suspect Range 2 0.25 0.25 0.275 2 0.75	Analysis Settings	C Settings								
Size Quality Pass If Value is Fail If Value is Suspect Range 2 025 2 0.75									0	
Fall /f Value Ix Suspect Range Pass If Value Ix c 025 025 2 0.75	Size Quality									
< 0.25 0.25 2 0.75 2 0.75	Fail if Value	is Si	uspect Range	Pass if Value is						
	< 0.25	0.25 - 0.	75	≥ 0.75						

Нажать кнопку Save.

5.5 Создание Assay

Перейти в раздел Library в программе Data Collection Software. В разделе Manage, выбрать вкладку Assays. В открывшемся меню нажать кнопку Create (откроется диалоговое окно создания нового Assay). В появившемся окне указать параметры нового Assay:

Assay Name

COrDIS mini1

Application Type Instrument Protocol

HID COrDIS mini1

Нажать кнопку Save.

📜 Create New Assay		
Setup an Assay		
		Assay Setup Help 🕜
* Assay Name: CORDIS mini1		Color: Green 🗸
Application Type: HID 🔹	Disable Filters	
Protocols		
Do you wish to assign multiple instrument pro	tocols to this assay? 💿 No 🛛 🔘 Yes	
* Instrument Protocol:	CORDIS mini1	▼ Edit Create New
* QC Protocol:	GORDIZ	Edit Create New
Close		Save

5.6 Подготовка и загрузка продуктов амплификации

Для загрузки образцов в прибор необходимо приготовить смесь Hi-DiTM формамида и размерного стандарта S550 в следующем соотношении:

Компонент	Объем на один образец
Hi-Di ^{тм} формамид	10.0 мкл
Размерный стандарт S550	1 мкл

При расчете объемов компонентов смеси следует учесть, что формамидом должны быть заполнены все лунки, в которых будет происходить инжекция, в том числе и лунки, не содержащие образцы. Как минимум одна лунка при анализе каждой серии образцов должна содержать аллельную лестницу.

После перемешивания добавить по 10 мкл смеси в каждую лунку планшета. Затем внести в лунки по 1 мкл ПЦР-продукта или аллельной лестницы. При необходимости удалить пузыри со дна лунок планшета коротким центрифугированием. Накрыть планшет резиновым ковриком и загрузить в прибор в соответствии с инструкцией пользователя ABI PRISM[®] Genetic Analyzer.

В состав набора входит аллельная лестница, рассчитанная на проведение 50 инжекций (при нанесении 1 мкл аллельной лестницы в лунку планшета). При недостаточной чувствительности генетического анализатора допускается увеличение объема вносимой в лунку аллельной лестницы до 2 мкл.

Размерный стандарт S550 рассчитан на 240 инжекций. При необходимости, объем вносимого в лунку размерного стандарта S550 может быть снижен до 0.3 мкл для увеличения возможного количества инжекций. Благодаря высокой плотности фрагментов стандарта S550 обеспечивается высокая точность и воспроизводимость определения длины амплифицированных фрагментов исследуемого образца без потери качества анализа.

5.7 Запуск прибора

Проведение капиллярного электрофореза на генетическом анализаторе ABI PRISM[®] проводится в соответствии с инструкцией пользователя, предоставляемой производителем. Для получения корректных результатов необходимо создать соответствующую спектральную калибровку, Instrument Protocol и Assay.

Шаг А – Создание планшета

Перед началом анализа необходимо создать **Plate** (планшет), описывающий расположение образцов на планшете и содержащий инструкции для прибора. Для этого необходимо перейти в меню **Create New Plate** программы **Data Collection Software**. Появится диалоговое окно, в котором необходимо указать параметры нового планшета:

Name	Например CORDIS_[<i>дата</i>]
Plate Type	Fragment

Нажать кнопку ОК. Появится новая таблица со схемой исследуемого планшета.

Шаг В – Заполнение таблицы

Для всех анализируемых лунок планшета необходимо указать:						
Sample name	имя объекта					
Sample type	тип образца					
Assay	CORDIS mini1					
Filename convention	структура имени файла					
Results group	параметры сохранения файлов					

Шаг С – Запуск прибора и информация о статусе прибора

После создания схемы расположения образцов на планшете, нажмите на кнопку Link Plate for Run. В открывшемся окне указать положение планшета в приборе и запустить электрофорез нажатием кнопки Start Run.

5.8 Оптимизация интенсивности сигнала

Для повышения интенсивности сигнала возможно увеличение времени инжекции. Усиление сигнала также возможно с помощью очистки ПЦР-продукта от праймеров и солей. Количество размерного стандарта в этом случае следует так же уменьшить.

При работе с высокочувствительными генетическими анализаторами ABI 3500 могут наблюдаться нежелательные эффекты, связанные с избыточным уровнем сигнала флуоресценции амплифицированных продуктов на этапе анализа результатов электрофореза. В этом случае рекомендуется снизить количество вносимого в реакцию генетического материала до рекомендованных 0,5 нг геномной ДНК. Дополнительно, снижение избыточного уровня сигнала флуоресценции амплифицированных продуктов может быть достигнуто снижением времени инжекции образцов до 5–7 сек.

6. АНАЛИЗ ДАННЫХ

6.1 Настройка программного обеспечения GeneMapper

Полученные данные могут быть проанализированы с использованием программного обеспечения GeneMapper ID и GeneMapper ID-X.

Программное обеспечение GeneMapper требует предварительной настройки параметров анализа. Параметры анализа для наборов COrDIS могут быть импортированы в программу из файлов настроек, предоставляемых производителем по запросу.

Для анализа результатов электрофореза с использованием программного обеспечения GeneMapper необходимо произвести следующие действия:

1) Произвести импорт файлов панелей и бинов. Выбрать пункт меню Tools->Panel Manager.

В левом верхнем сегменте открывшегося окна установить курсор на позицию Panel Manager.

Затем в меню выбрать File->Import panels.

1	Panel Manager							
File	Edit Bins View Help							
inter anti-	New Panel	Ctrl+N	et:			~	IIf	U,
	Duplicate Panel		ane		Comment			
	Duplicate Kit		Ξ	XPERT_v4	none			
	Import Panels	Ctrl+M						
	Import Bin Set	Ctrl+Shift+B						
	Import Marker Stutter	Ctrl+Shift+M						
	Export Panels	Ctrl+E						
	Export Bin Set	Ctrl+Shift+E						
	Export All Kits	Ctrl+K						
	Export Marker Stutter	Ctrl+Shift+X						
			_					

В открывшемся окне найти и выбрать файл с панелями (Например, файл mini1_Panels). Загрузить нажатием кнопки Import. В левом верхнем сегменте окна выбрать загруженную панель (Например, mini1), затем в меню выбрать File>Import bin set. В открывшемся окне найти и выбрать файл с бинами (Например, файл mini1_bins). Загрузить нажатием кнопки Import. Нажать кнопки Apply и OK.

2) Произвести импорт настроек размерного стандарта. Выбрать пункт меню Tools > GeneMapper Manager. В открывшемся окне выбрать вкладку Size Standards

🧬 GeneMapper® ID-X Manager			×
Find Name Containing:			
Projects Analysis Methods Table Se	ttings Plot Settings Matrices	Size Standards Report	t Settings
Name Last Saved	Owner	Туре	Description
5450 2017-02-27			GMID v3.2x
<u>N</u> ew <u>O</u> pen S <u>a</u> ve	As Import Exp	oort	Delete
			Help Done

Загрузить файл настроек размерного стандарта нажатием кнопки Import. Нажать кнопку Done.

3) Создать новый метод анализа.

Выбрать пункт меню Tools -> GeneMapper Manager. В открывшемся окне выбрать вкладку Analysis Methods.

2

📌 GeneMapper® ID-X Manager											
Find Name Containing:											
Projects	Analysis Methods	Table	Settings	Plot Setting	gs Matrices	Size S	tandards	Report	Settings		
Projects	Analysis Methods	Table :	Settings Last Sav	Plot Setting	gs Matrices Owner	Size S	tandards Instrume	Report nt	Settings Analysis Type	Description	
Projects	Analysis Methods Name COrDIS EXPERT	Table	Settings Last Sav 2019-07	Plot Setting ed -19 17:45:0	gs Matrices Owner Administrator	Size S	tandards Instrume	Report nt	Settings Analysis Type HID	Description	

Создать новый метод анализа нажатием кнопки New.

Присвоить имя новому методу анализа. Например, CORDIS mini1. Analysis Method Editor \times

General	Allele	Peak [Detector	Peak Quality	SQ & GQ Settin	gs	
Analysis	s Metho	d Descr	iption —				
Name:		[COrDIS E	XPERT			
Securit	Security Group:		Databasir	ng Security Gro	up		\sim
Descrip	tion:						^ ~
Instrum	ient:	[
Analysi	s Type:	H	HID				

Во вкладке Allele выбрать соответствующий набор бинов.

Х

Analysis Method Editor

General A	lele Peak Detector	Peak Q	uality S	SQ & GQ Sett	ings				
Bin Set:	COrDIS_EXPERT_	v4				~			
	None								
	COrDIS_EXPERT_V	/4							
Use Use	marker-specific stut	ter ratio	and dista	ance if availab	ole				
Marker Re	epeat Type:		Tri	Tetra	Penta	Hexa			
Global Cu	t-off Value		0.2	0.2	0.2	0.2			
MinusA Ra	atio		0.0	0.3	0.0	0.0			
MinusA Di	stance	From	0.0	0.0	0.0	0.0			
		То	0.0	0.0	0.0	0.0			
Global Min	us Stutter Ratio		0.0	0.0	0.0	0.0			
Global Min	us Stutter Distance	From	0.0	3.25	0.0	0.0			
		То	0.0	4.75	0.0	0.0			
Global Plu	s Stutter Ratio		0.0	0.0	0.0	0.0			
Global Plu	s Stutter Distance	From	0.0	0.0	0.0	0.0			
		То	0.0	0.0	0.0	0.0			
Ameloge	nin Cutoff	0.0							
Range	Range Filter Factory Defaults								
	Save As	;	Save	Cancel	Help				

Провести настройку параметров анализа во вкладке Peak Detector: установить значение параметра Peak Window Size равным 9, отключить нормализацию сигнала (Use Normalisation, if applicable).

Anal	vsis	Method Editor	
	,	The concerned a concern	

Analysis Method	Editor							×
General Allele	Peak Detector	Peak Quality	SQ & GQ	Settings				
Peak Detection	Algorithm: Adva	nced						
Ranges			Peak D	etection				
Analysis	Sizing		Peak	Amplitude Thre	esholo	ls:		
Full Range	✓ All Size	es 🗸	B:	50	R:	50		
Start Pt: 0	Start S	ize: 0	G:	50	P:	50		
Stop Pt: 10000	Stop Si	ze: 1000	Y:	50	0:	50		
-Smoothing and I	Baselining		Min. F	Peak Half Widt	h:	2	pts	
Smoothing	O None		Polyn	omial Degree:		3	-	
	Light		Peak	Window Size:		9	pts	
Beecherster			Slope	Threshold				
Baseline Windo	51 ST	pts	Peak	Start:		0.0		
Size Calling Met	hod		Peak	End:		0.0	-	
2nd Order	Least Squares							
O 3rd Order	Least Squares		Norma	alization				
Local Sout	thern Method			e Normalizatio	on, if	applicab	le	
Global Sou	uthern Method							
				Fa	octory	Defaul	ts	
	Save As	Save	Cano	el Help	b			

Сохранить изменения.

6.2 Стандарт длины S550

Ниже приводится пример электрофореграммы с сигналами фрагментов стандарта S550 в канале детекции Orange. Обозначения 26 фрагментов ДНК приводятся в соответствии с их размером: 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 230, 240, 260, 280, 300, 320, 340, 360, 380, 400, 420, 440, 450, 500, 550.

Рисунок 1. Электрофореграмма размерного стандарта S550. Размеры фрагментов.

6.3 Диапазоны размеров аллелей STR маркеров

Локус	Диапазон	Диапазон длин	Аллели	Канал
	аллелеи	фрагментов	MK-1	детекции
D8S1179	7 - 20	70 - 128	10/10	синий
D5S818	6 - 18	129 - 179	9/12	синий
SE33	4.2 - 50.2	190 - 360	24.2/29.2	синий
D10S1248	8 - 21	72 - 137	15/15	зеленый
D16S539	4 - 16	140 - 198	12/13	зеленый
D12S391	13 - 28	90 - 160	21/23	желтый
CSF1PO	5 - 16	162 - 210	9/11	желтый
Amelogenin X	Х	106	Х	красный
Amelogenin Y	Y	112	Y	красный
FGA	12.2 - 51.2	120 - 280	20/22.2	красный

Таблица 2 Диапазон длин аллелей.

6.4 Амплификация контрольной ДНК

Рисунок 2 Контрольная ДНК МК1 COrDIS мини 1.

6.5 Аллельная лестница

Рисунок 3. Аллельная лестница COrDIS мини 1.

7. ИНФОРМАЦИЯ О ФИРМЕ ПРОИЗВОДИТЕЛЕ

Производитель: ООО «ГОРДИЗ» Адрес: 121205 г. Москва, территория инновационного центра Сколково, ул. Большой Бульвар, д.42, стр. 1, эт.1 пом.337; Телефон/факс: +7 (499) 670-40-41, Домашняя страница: www.gordiz.ru e-mail: gordiz@gordiz.ru